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Abstract. The theme of this paper is certifying software for state es-
timation of dynamic systems, which is an important problem found in
spacecraft, aircraft, geophysical, and in many other applications. The
common way to solve state estimation problems is to use Kalman fil-
ters, i.e., stochastic, recursive algorithms providing statistically optimal
state estimates based on noisy sensor measurements. We present an op-
timality certifier for Kalman filter programs, which is a system taking a
program claiming to implement a given formally specified Kalman filter,
as well as a formal certificate in the form of assertions and proof scripts
merged within the program via annotations, and tells whether the code
correctly implements the specified state estimation problem. Kalman fil-
ter specifications and certificates can be either produced manually by
expert users or can be generated automatically: we also present our first
steps in merging our certifying technology with AutoFilter, a NASA
Ames state estimation program synthesis system, the idea being that
AutoFilter synthesizes proof certificates together with the code.

1 Introduction
A common software development task in the spacecraft navigation domain is to
design a system that can estimate the attitude of a spacecraft. This is typically
mission-critical software because an accurate attitude estimate is necessary for
the spacecraft controller to tilt the craft’s solar panels towards the sun. Attitude
estimators for different spacecraft, as well as a spectrum of other estimators
for dynamic systems in general, are typically variations on a theme, solving a
state estimation problem. The common way to solve state estimation problems
is to use Kalman filters. A Kalman filter is essentially a set of mathematical
equations implementing a predictor-corrector type estimator that is optimal in
the sense that it minimizes the estimated error between the real and the predicted
states. Since the time of their introduction [8] in 1960, Kalman filters have been
the subject of extensive research and application, particularly in the area of
autonomous or assisted navigation. This is likely due in large part not only to
advances in digital computing that made their use practical, but also to the
relative simplicity and robust nature of the filter itself.

Despite their apparent simplicity, implementations of state estimation prob-
lems are quite hard to prove correct. Correctness in this context means that the
state calculated by a given implementation, called the state estimate, is mathe-
matically optimal when one considers all the hypotheses given in the description



of the state estimation problem. Descriptions of such problems are given as
sets of stochastic difference equations, and optimality is rigorously, statistically
formulated using matrix differentiation. Since this domain is not common in
computer-aided verification, we find it appropriate to dedicate an entire section,
Section 2, to Kalman filters, their subtleties (especially the assumptions under
which they can be proved optimal), as well as to their variations.

Due to the need of accurate state estimates in critical applications, it is
important to be able to provide optimality guarantees whenever possible. In
this paper we present work in progress on a verification environment for the
nontrivial class of domain-specific programs solving state estimation problems.
Our long term goal is to provide a domain formalization, including axiomatiza-
tion of several segments of mathematics together with significant lemmas, and a
friendly tool making use of it to formally certify optimality. Up to this moment
we were able to develop a common framework and a prototype tool with which
we were able to certify three of the most important Kalman filters, the simple
Kalman filter, the information filter and the extended Kalman filter. One would,
of course, like to certify software as automatically as possible, but this is very
rarely feasible due to intractability arguments and clearly close to impossible
for the complex domain presented in this paper. Therefore, user intervention is
often needed to insert domain-specific knowledge into the programs to be cer-
tified, usually under the form of code annotations. The certifier in this paper
needs annotations for model specifications, assertions, and proof scripts. It is
mostly implemented in Maude [5], a freely distributed high-performance exe-
cutable specification system in the OBJ [7] family, supporting both rewriting
logic [11] and membership equational logic [12]. Because of its efficient rewriting
engine and because of its metalanguage and modularization features, Maude is
an excellent tool to develop executable environments for various logics, models
of computation, theorem provers, and even programming languages. The work
in this paper falls under what was called domain-specific certification in [10].

A growth area in the last couple of decades has been code generation. Al-
though commercial code generators are mostly limited to generating stub codes
from high level models (e.g., in UML), program synthesis systems that can gen-
erate fully executable code from high level behavioral specifications are rapidly
maturing (see, for example, [20, 18]), in some cases to the point of commercializa-
tion (e.g., SciNapse [1]). In program synthesis, there is potential for automatically
verifying nontrivial properties because additional background information – from
the specification and the synthesis knowledge base – is available. Following the
ideas in [16, 15], we show how we coupled together AutoFilter, a NASA Ames
synthesis system for the state estimation domain, and our prototype certifier.
The main idea here is to modify AutoFilter to synthesize not only the code,
but also the appropriate formal annotations needed by the certifier.

Due to space limitation, we only give a high level overview of our work in
optimality certification of state estimates. The reader is referred to a 50 page
report [9] presenting in detail a previous version of this work. Important related
work includes proof-carrying code [14] and extended static checking [3, 17].



2 Kalman Filters

A Kalman filter is essentially a set of mathematical equations implementing a
predictor-corrector type estimator that is optimal in the sense that it minimizes
the estimated error covariance - when some assumptions are met. Since the
time of their introduction [8], Kalman filters have been the subject of extensive
research and application, particularly in the area of autonomous or assisted
navigation. This is likely due in large part to advances in digital computing that
made their use practical, but also to the relative simplicity and robust nature
of the filter itself. We have tested our state estimation certification technique on
three Kalman filters in current use, the simple Kalman filter, the information
filter and the extended Kalman filter, which are briefly discussed next.

The simple Kalman filter addresses the general problem of estimating the
state x ∈ IRn of a discrete-time controlled system that is governed by the linear
stochastic difference equation for x with measurement z ∈ IRm:

xk+1 = Φkxk + wk (1) zk = Hkxk + vk. (2)

xk is the process state vector at time k. For example, the state vector xk might
contain three variables representing the rotation angles of a spacecraft. Equation
(1) is the process model, describing the state dynamics over time – the state at
time k + 1 is obtained by multiplying the state transition matrix Φk by the pre-
vious state xk. The model is imperfect, however, as represented by the addition
of the process noise vector wk. Equation (2) is the measurement model and mod-
els the relationship between the measurements and the state. This is necessary
because the state usually cannot be measured directly. The measurement vector,
zk, is related to the state by matrix Hk. The random vectors wk and vk represent
the process and measurement noise, respectively, and they are assumed to be
independent of each other, white, and with normal distribution:

p(wk) ∼ N(0, Qk) (3)

p(vk) ∼ N(0, Rk) (4)

E[wkv>i ] = 0 (5)

E[wkw>

i ] =

{

Qk, if i = k
0, if i 6= k

(6)

E[vkv>i ] =

{

Rk, if i = k
0, if i 6= k.

(7)

As an example of how the simple Kalman filter works in practice, consider
a simple spacecraft attitude estimation problem. Attitude is usually measured
using gyroscopes, but the performance of gyroscopes degrades over time so the
error in the gyroscopes is corrected using other measurements, e.g., from a star
tracker. In this formulation, the process equation (1) would model how the gyro-
scopes degrade and the equation (2) would model the relationship between the
star tracker measurements and the three rotation angles that form the state (in
this case, Hk would be the identity matrix because star trackers measure rota-
tion angles directly). From these models, a Kalman filter implementation would
produce an optimal estimate of the current attitude, where the uncertainties in
the problem (gyro degradation, star tracker noise, etc.) have been minimized.

Before we present the implementation of the simple Kalman filter, we need
several important notions. Let us define x̂−

k ∈ IRn to be the a priori state estimate

at step k given knowledge of the process prior to step k, and x̂k ∈ IRn be the a



posteriori state estimate at step k given measurement zk, with their a priori and
a posteriori estimate errors e−k = xk − x̂−

k and ek = xk − x̂k, respectively. The a

priori estimate error covariance is then P−

k = E[e−k (e−k )>] = E[(xk − x̂−

k )(xk −
x̂−

k )>] and the a posteriori estimate error covariance is Pk = E[ekek
>] = E[(xk−

x̂k)(xk − x̂k)>]. We define also the measurement prediction as z−

k = Hkx̂−

k .

Enter prior estimate x̂
−

0
and

its error covariance P−

0

��

Compute Kalman gain:
Kk = P−

k
H>

k
(HkP−

k
H>

k
+ Rk)−1

��

z0, z1, · · ·

��
Project ahead:
x̂
−

k+1
= Φkx̂k

P
−

k+1
= ΦkPkΦ>

k
+ Qk

33

Update estimate with
measurement zk:

x̂k = x̂
−

k
+Kk(zk−Hkx̂

−

k
)

��

oo

Compute error covariance
for updated estimate:
Pk = (In − KkHk)P−

k

XX

x̂0, x̂1, · · ·

1. input xhatmin(0), Pminus(0);
2. for(k, 0, n) {
3. zminus(k) := H(k) * xhatmin(k);
4. gain(k) := (Pminus(k)*trans(H(k)))*minv(((H(k)*Pminus(k))*trans(H(k)))+R(k));
5. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));
6. P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);
7. xhatmin(k + 1) := Phi(k) * xhat(k);
8. Pminus(k + 1) := ((Phi(k) * P(k)) * trans(Phi(k))) + Q(k);}

Fig. 1. Simple Kalman filter loop and intermediate code.

In deriving the equations for the Kalman filter program, one needs to first
find an equation that computes an a posteriori estimate x̂k as a linear combi-
nation of an a priori estimate x̂−

k and a weighted difference between the actual
measurement zk and the measurement prediction z−k as shown below:

x̂k = x̂−

k + Kk(zk − z−k ). (8)

where (zk−z−k ) is called the measurement innovation, or the residual, and reflects
the discrepancy between the predicted and the actual measurements. The n×m
matrix Kk is chosen to be the gain, or blending factor, that minimizes the a
posteriori estimate error covariance Pk. One form of the Kalman gain is

Kk = P−

k H>

k (HkP−

k H>

k + Rk)−1, (9)

which, after hundreds of basic equational steps, yields the covariance matrix
Pk = (In − KkHk)P−

k . Figure 1 gives a complete picture of the simple Kalman
filter, both as a diagram and as intermediate code that AutoFilter generates.

AutoFilter takes as input a mathematical specification including equations
(1) - (7) and also descriptions of the noise characteristics and filter parameters,
and first generates code like in Figure 1 and then translates it into C++, Matlab
or Octave. In this paper we only consider code in the intermediate language.



Despite its apparent simplicity, the proof of optimality for the simple Kalman
filter is quite complex. The main proof task is to show that the vector x̂k is the
best estimate of the state vector xk at time k, under appropriate simplifying
assumptions, and is usually presented in books informally on several pages (see
[2], for example). In the sequel, we sketch this proof, emphasizing those aspects
which are particularly relevant for its mechanization, especially the assumptions.

The very first assumption is that x̂−

0 and P−

0 are the best initial prior es-
timate and its error covariance matrix. Another assumption is that the mea-
surement prediction at any given time k, z−k , is the most probable measure-
ment. The most important assumption says that the best estimate x̂k is a lin-

ear blending of the residual and the prior estimate (8). The justification for
this assumption is rooted in the probability of the prior estimate x̂−

k condi-
tioned on all the prior measurements zk (see [2, 19] for more details). Formally,
this says that the best estimate x̂k is somewhere in the image of the function
x̂k(y) := λy.(x̂−

k +y(zk−z−k )), where the blending factor y is an n×m matrix. If
Pk(y) := E[(xk− x̂k(y))(xk− x̂k(y))>] is the a posteriori error covariance matrix
regarded as a function of y, then we wish to find the particular y that minimizes
the individual terms along the major diagonal of Pk(y), because these terms
represent the estimation error covariances for the elements of the state vector
being estimated. Using another assumption, that the individual mean-square
errors are also minimized when the total is minimized, our problem reduces to
finding the y that minimizes the trace, trace(Pk(y)), of Pk(y), where the trace
of a square matrix is the sum of the elements on its major diagonal. This opti-
mization is done using a differential calculus approach. Differentiation of matrix
functions is a complex field that we partially formalized and which we cannot
cover here, but it is worth mentioning, in order for the reader to anticipate the
non-triviality of this proof, that the y we are looking for is the solution of the
equation d(trace(Pk(y)))/dy = 0, where for a standard function f(y11, y12, . . .)
on the elements of the matrix y, such as trace(Pk(y)), its derivative df/dy is the
matrix (df/dyij)ij having the same dimension n×m as y. Using two important
differentiation lemmas, namely “d(trace(yA))/dy = A> if yA is a square matrix”
and “d(trace(yAy>))/dy = 2yA if A is a symmetric matrix”, after several thou-
sands of basic proof steps one gets the desired solution, the so called Kalman
gain (9). The a posteriori best estimate, x̂k := x̂k(Kk), and the covariance ma-
trix associated with the optimal estimate, Pk(Kk), can now also be calculated
by equational reasoning, and the updated estimate x̂k is “projected ahead” via
the transition matrix, x̂−

k+1 = Φkx̂k. The fact x̂−

k+1 is the best prior estimate at
time k + 1 follows by another important assumption, saying that the best prior
estimate at the next step follows the state equation (1) using the best estimate at
the current state, but where the contribution of the process noise wk is ignored
(we are justified in doing this because the noise wk has zero mean and is not
correlated with any one of the previous w’s). By equational reasoning it follows
now that P−

k+1, the error covariance matrix of x̂−

k+1, is ΦkPkΦ>

k + Qk.

The flow of calculations above is for simple Kalman filters, but its equations
can be algebraically manipulated into a variety of forms. An alternative form is



known as the information filter [2], which additionally assumes that the matri-
ces P−

k , Pk, and Rk admit inverses. (P−

k )−1 is thought of as a measure of the
information content of the a priori estimate. Then Pk = ∞, i.e., (P−

k )−1 = 0,
corresponds to infinite uncertainty, or zero information. This leads to the inde-
terminate form ∞

∞
in the Kalman gain expression (9), so one can not apply the

simple Kalman filter due to rounding errors. The information filter accommo-
dates this situation and is based on the equations (which can be obtained as
above):

P−1
k = (P−

k )−1 + H>

k R−1
k Hk (10) Kk = PkH>

k R−1
k . (11)

The Kalman filters discussed so far address the general problem of estimating
the state x ∈ IRn of a discrete-time controlled process that is governed by a
linear stochastic difference equation. However, some of the most interesting and
successful applications of Kalman filters are non-linear, i.e., the process and
measurement models are given by equations of the form

xk+1 = f(xk, uk) + wk (12) zk = h(xk) + vk, (13)

where f and h are non-linear functions, uk is a deterministic forcing function
(regard it as an input), and the random vectors wk and vk again represent the
process and the measurement noise and satisfy the same conditions as for the
simple Kalman filter. To simplify computations and to make the problem imple-
mentable, one can linearize it about a trajectory that is continually updated with
the state estimates resulting from the measurements. The new filter obtained this
way is called extended Kalman filter (or simply EKF). Since the noises wk and vk

have mean 0 and since x̂k and x̂−

k are estimates anyway, one can approximate the
a priori state estimate and measurement prediction vectors as x−

k+1 = f(x̂k, uk),

and z−k = h(x̂−

k ), respectively. Taking Φk and Hk the Jacobian matrices

Φk = (
δfi

δxj

(x̂k, uk))i,j , Hk = (
δhi

δxj

(x̂−

k ))i,j ,

one can approximate f and h with their first order Taylor series expansions

f(xk, uk) = f(x̂k, uk) + Φk(xk − x̂k), h(xk) = h(x̂−

k )+Hk(xk−x̂−

k ).

One can get the new governing equations that linearize an estimate

xk+1 = x̂−

k+1 + Φk(xk − x̂k) + wk, zk = z−k + Hk(xk − x̂−

k ) + vk,

which can be solved and implemented following closely the simple Kalman filter.

3 Specifying and Annotating Kalman Filters
In order to perform computer-aided optimality certification of programs imple-
menting sophisticated state estimation problems like the ones above, one first
needs to rigorously specify the statistical problem together with all its needed
assumptions. In fact, an initially unexpected important benefit of our technique,
whose value we discovered progressively during experiments, is that it makes our
user aware of all the assumptions under which a Kalman filter program indeed
calculates the expected optimum state estimate, which usually include strictly
those mentioned by authors of theorems in textbooks1. These specifications are

1 Which is understandable, otherwise theorems would look too heavy for humans.



defined on top of an axiomatically formalized abstract domain knowledge theory,
including matrices, differentiation and probability theory (presented in the next
section), and use Maude membership equational logic notation [6, 5], which is
natural but we do not explain here. The simple Kalman filter, for example, has
45 axioms (properties and assumptions); we comment on a few of these next.

Operations or constants declaring the matrices and vectors involved together
with their dimensions are defined first:

ops x z v w : Nat -> RandomMatrix . ops R Q Phi H : Nat -> Matrix .
ops n m p : -> Nat . var K : Nat .
eq row(x(K)) = n . eq column(x(K)) = 1 . eq row(w(K)) = n . eq column(w(K)) = 1 .
eq row(Phi(K)) = n . eq column(Phi(K)) = n . eq row(z(K)) = m . eq column(z(K)) = 1 .
eq row(v(K)) = m . eq column(v(K)) = 1 . eq row(H(K)) = m . eq column(H(K)) = n .
...

The sort Nat comes from a Maude builtin module, while the sorts Matrix and
RandomMatrix are defined within the abstract domain, presented in the next sec-
tion, and stay for random matrix variables and for matrices, respectively. Other
axioms specify model equations (which are labeled for further use), such as

[ax*> | KF-next] eq x(K + 1) = Phi(K) * x(K) + w(K) .
[ax*> | KF-measurement] eq z(K) = H(K) * x(K) + v(K) .
[ax*> | RK] eq R(K) = E| v(K) * trans(v(K)) | .
[ax*> | QK] eq Q(K) = E| w(K) * trans(w(K)) | .

Operations * , + , trans (matrix transpose) and E| | (error covariance) on ma-
trices or random matrices are all axiomatized in the abstract domain. Other
assumptions that we do not formalize here due to space limitation include inde-
pendence of noise, and the fact that the best prior estimate at time k + 1 is the
product between Phi(k) and the best estimate calculated previously at step k.
One major problem that we encountered while developing our proofs following
textbook proofs was that these assumptions, and many others not mentioned
here, are so well and easily accepted by experts that they don’t even make their
use explicit in proofs. One cannot do this in formal proving, so one has the
nontrivial task to detect and then declare them explicitly as special axioms.

In order to machine check proofs of optimality, they must be properly de-
composed and linked to the actual code. This can be done in many different
ways. For simplicity, we prefer to keep everything in one file. This can be done
by adding the specification of the statistical model at the beginning of the code,
and then by adding appropriate formal statements, or assertions, as annotations
between instructions, so that one can prove the next assertion from the previous
ones and the previous code. Formal proofs are also added as annotations where
needed. Notice that by “proof” we here mean a series of hints that allows our
proof assistant and theorem prover, Maude’s Inductive Theorem Prover (ITP)
[4], to generate and then check the detailed proof. The next shows how the 8 line
simple Kalman filter code in Figure 1 is annotated in order to be automatically
verifiable by our optimality certifier. In order to keep the notation simple, we
either removed or replaced by plain English descriptions the formal specifica-
tion, assertions and proofs occurring in the code as comments. It may be worth
mentioning that the entire annotated simple Kalman filter code has about 300
lines, that it compresses more than 100,000 basic proof steps as generated by
ITP, and that it takes about 1 minute on a 2.4GHz standard PC to generate all
the proofs from their ITP hints and then check them:



/* Specification of the state estimation problem ... about 45 axioms/assumptions */
1. input xhatmin(0), Pminus(0);
/* Proof assertion 1: ... */
/* Assertion 1: xhatmin(0) and Pminus(0) are best prior estimate and its error covar. */
2. for(k,0,n) {
/* Assertion 2: xhatmin(k) and Pminus(k) are best prior estimate and its error covar. */
3. zminus(k) := H(k) * xhatmin(k);
4. gain(k) := Pminus(k) * trans(H(k)) * minv(H(k) * Pminus(k) * trans(H(k)) + R(k));
/* Proof assertion 3: ... */
/* Assertion 3: gain(k) minimizes the error covariance matrix */
5. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));
/* Proof assertion 4: ... */
/* Assertion 4: (the main goal) xhat(k) is the best estimate */
6. P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);
/* Proof assertion 5: ... */
/* Assertion 5: P(k) is the error covariance matrix of xhat(k) */
7. xhatmin(k + 1) := Phi(k) * xhat(k);
8. P(k + 1) := ((Phi(k) * P(k)) * trans(Phi(k))) + Q(k);
/* Proof assertion 2 at time k + 1: ... */
}

The proof assertions and proofs above should be read as follows: proof assertion
n is a proof of assertion n in its current environment. The best we can assert be-
tween instructions 1 and 2 is that xhatmin(0) and Pminus(0) are initially the best
prior estimate and error covariance matrix, respectively. This assertion is an as-
sumption in the theory of Kalman filters, axiom in our specification, so it can be
immediately checked. Between 2 and 3 we assert that xhatmin(k) and Pminus(k)

are the best prior estimate and its error covariance matrix, respectively. This is
obvious for the first iteration of the loop, but needs to be proved for the other
iterations. Therefore, our certifier performs an implicit proof by induction. The
assertion after line labeled 4 is that gain(k) minimizes the a posteriori error
covariance matrix. This was the part of the proof that was the most difficult to
formalize. We show it below together with its corresponding ITP proof script:

[proof assertion-3]
(set (instruction-1-1 instruction-2 assertion-1-1 assertion-1-2 Estimate KF-measurement

zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2 RK id*left id*right id-trans
distr*trans minus-def1 misc-is E- E+ E*left E*right trans-E fun-scalar-mult
fun-mult fun-trans fun-def1 fun-def2 minimizes trace+ trace- tracem-def1
tracem-def2 trace-lemma1 trace-lemma1* trace-lemma2 lemma-1 lemma-2 lemma-3
lemma-4 lemma-5 lemma-6 lemma-7 lemma-8 lemma-9 lemma-10 lemma-11) in (1) .)

(rwr (1) .)
(idt (1) .)
---------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
[assertion-3]

eq gain(K) minimizes /\ y . (E|(x(K) - Estimate(K,y)) * trans(x(K) - Estimate(K,y))|)
= (true) .

---------------------------------------------------------------------- */

Hence, we first “set” 44 axioms, lemmas, and/or previous assertions or instruc-
tions, all referred to by their labels, and then simplify the proof task by rewriting
with the ITP command rwr. This particular proof can be done automatically (idt
just checks for identity). The axioms are either part of the particular Kalman
filter specification under consideration (such as those on the second row) or part
of the axiomatization of the abstract domain (such as those on the third and
fourth rows), which is general to all Kalman filters. The lemmas are essentially
properties of the state estimation domain, so they belong to the abstract domain.
As explained in the next section, these lemmas have been devised by analyzing
several concrete state estimation problems and extracting their common features.



4 Specifying the Abstract Domain Knowledge

To generate and automatically certify the optimality proofs discussed so far,
one needs to first formalize the state estimation domain knowledge, which in-
cludes matrices, random matrices, functions on matrices, and matrix differenti-
ation. Formalizing the abstract domain was by far the most tedious part of this
project, because it suffered a long series of refinements and changes as new and
more sophisticated state estimation problems were considered. Since most of the
operations on matrices are partial, since domain specifications are supposed to
be validated by experts and since our work is highly experimental at this stage,
we decided to use Maude [5] and its ITP tool [4] to specify and prove proper-
ties of our current domain knowledge, because these systems provide implicit
strong support for partiality2 (via memberships), their specifications are human
readable due to the mix-fix notation, and can be easily adapted or modified to
fulfill our continuously changing technical needs. Our current domain passed the
criterion telling if a total theory can be safely regarded as partial [13]. However,
we think that essentially any specification language could be used instead, if
sufficient precautions are taken to deal properly with partial operations.

Matrices and Random Matrices. Matrices are extensively used in all state
estimation problems and their optimality proofs, so we present their formaliza-
tion first. Four sorts, in the subsort lattice relationship (using Maude notation)
“subsorts Matrix < MatrixExp RandomMatrix < RandomMatrixExp”, have been in-
troduced. Random matrices are matrices whose elements can be random vari-
ables, such as the state to be estimated, the measurements and/or the noise, and
(random) matrix expressions can be formed using matrix operators. Most of the
operations and axioms/lemmas in matrix theory are partial. For example, multi-
plication is defined iff the number of columns of the first matrix equals the num-
ber of rows of the second. It is a big benefit, if not the biggest, that Maude pro-
vides support for partiality, thus allowing us to compactly specify matrix theory
and do partial proofs. The resulting sort (or rather “kind”) of a partial operator
is declared between brackets in Maude; for example, the partial operation of mul-
tiplication is defined as “op _+_ : MatrixExp MatrixExp -> [MatrixExp]”. Trans-
pose of a matrix is total, so it is defined as “op trans : MatrixExp -> MatrixExp”.
Membership assertions, stating when terms have “proper” sorts, can now be
used to say when a partial operation on matrices is defined (two total operators,
“ops row column : MatrixExp -> Nat”, are needed). For example, the following
axioms define multiplication together with its dimensions:

vars P Q R : MatrixExp . cmb P*Q : MatrixExp if column(P) == row(Q) .
ceq column(P*Q) = column(Q) if P*Q : MatrixExp . ceq row(P*Q) = row(P) if P*Q : MatrixExp .

Most of the matrix operators are overloaded, i.e., defined on both matrices and
random matrices. Operators relating the two, such as the error covariance oper-
ator “op E|_| : RandomMatrixExp -> MatrixExp”, together with plenty of axioms
relating the various operators on matrices, such as distributivity, transpose of
multiplications, etc., are part of the abstract domain theory.

2 We are not aware of any systems providing explicit support for partiality.



Functions on Matrices. An important step in state estimation optimality
proofs (see Section 2) is that the best estimate is a linear combination of the
best prior estimate and the residual (8). The coefficient of this linear dependency
is calculated such that the error covariance Pk is minimized. Therefore, before
the optimal coefficient is calculated, and in order to calculate it, the best estimate
vector is regarded as a function of the form λy.(〈prior〉+y ∗〈residual〉). In order
for this function to be well defined, y must be a matrix having proper dimensions.
We formally define functions on matrices and their properties by declaring new
sorts, MatrixVar and MatrixFun, together with operations for defining functions
and for applying them, respectively:

op /\_._ : MatrixVar MatrixExp -> MatrixFun .
op __ : MatrixFun MatrixExp -> [MatrixExp] .
cmb (/\ X . P)(R) : MatrixExp if X + R : MatrixExp .

Several axioms on functions are defined, such as
ceq (/\X.X)(R) = R if X + R : MatrixExp .
ceq (/\X.(P+Q))(R) = (/\X.P)(R) + (/\X.Q)(R) if X + R : MatrixExp and P + Q : MatrixExp .

Matrix Differentiation. As shown in Section 2, in order to prove that x̂k

is the best estimate of the state vector xk, a differential calculus approach
is used. Axiomatization matrix differentiation can be arbitrarily complicated;
our approach is top-down, i.e., we first define properties by need, use them,
and then prove them from more basic properties as appropriate. For exam-
ple, the only property used so far linking optimality to differentiation is that
K minimizes λy.P iff (d(trace(λy.P ))/dy)(K) = 0. For that reason, to avoid
deep axiomatizability of mathematics, we only defined a “derivative” operation
“op d|trace_|/d_ : MatrixFun MatrixVar -> MatrixFun” with axioms like:

ceq (d|trace(/\X.X)|/d(X))(R) = id(row(X)) if X + R : MatrixExp .
ceq (d|trace(/\X.(P+Q))|/d(X))(R) = (d|trace(/\X.P)|/d(X))(R) + (d|trace(/\X.Q)|/d(X))(R)

if X + R : MatrixExp and P + Q : MatrixExp .

The two important lemmas used in Section 2 are also added as axioms:
ceq d|trace(/\X.(X*P))|/d(X) = /\X.trans(P) if X * P : MatrixExp and not(X in P)) .
ceq d|trace(/\X.(X*P*trans(X)))|/d(X) = /\X.(2*X*P)

if X * P : MatrixExp and P * trans(X) : MatrixExp and trans(P) == P and not(X in P) .

Domain-specific Lemmas. One could, of course, prove the properties above
from more basic properties of reals, traces, functions and differentiations, but
one would need to add a significant body of mathematical knowledge to the
system. It actually became clear at an early stage in the project that a data-
base of domain-specific lemmas was needed. On the one hand, lemmas allow
one to device more compact, modular and efficiently checkable proofs. On the
other hand, by using a large amount of lemmas, the amount of knowledge on
which our certification system is based can be reduced to just a few axioms of
real numbers, so the entire system can be more easily validated and therefore
accepted by domain experts. We currently have only 34 domain-specific lemmas,
but their number is growing fast, as we certify more state estimation problems
and refine the axiomatization of the abstract domain. These lemmas were proved
using ITP [4], and were stored together with their proofs in a special directory.
The user refers to a lemma by its unique label, just as to any axiom in the domain,
and the certifier uses their proofs to synthesize and check the optimality proof.



5 Certifying Annotated Kalman Filters

There are several types and levels of certification, including testing and human
code review. In this paper we address certification of programs for conformance
with domain-specific properties. We certify that the computation flow of a state
estimation program leads to an optimum solution. The reader should not get
trapped by thinking that the program is thus “100% correct”. There can be
round-off or overflow errors, or even violations of basic safety policies, e.g., when
a matrix uses the metric measurement unit system and another uses the English
system, which our certifier cannot catch. What we guarantee is that, under the
given hypotheses (i.e., the specification at the beginning of the code), the math-
ematics underlying the given code provably calculates the best state estimate of
the specified dynamic system. The certifier presented next uses a combination
of theorem proving and proof checking; the interested reader is encouraged to
download the certifier and its manual from http://fsl.cs.uiuc.edu.
Cleaning the Code. The certifier first removes the insignificant details from
the code, including empty blocks, comments that bear no relevance to the domain
and statements that initialize the variables. We are justified in doing this because
we are interested in the correctness of the mathematical flow of computation and
not in the concrete values of the variables or matrices.
Generating Proof Tasks. The cleaned annotated Kalman filter, besides code
and specification, contains assertions and proof scripts. By analyzing their la-
bels and positions, the certifier generates a set of proof tasks. This is a tech-
nical process whose details will appear elsewhere, but the idea is that a task
“Domain+Spec+BeforeA |= A” is generated for each assertion A, where BeforeA

is the knowledge accumulated before A is reached in the execution flow. Each
generated task is placed in a separate file, together with an expanded proof,
in ITP [4] notation. The expanded proofs are generated from the original proof
scripts (which refer to lemmas via their names), by replacing each use of a lemma
by an instance of its proof3, which is taken from the database of domain-specific
lemmas. The reason for doing so is based on the belief that certifying authori-
ties have no reason to trust complex systems like ITP, but rather use their own
simple proof checkers; in this case we would use ITP as a proof synthesizer.
Proof Checking. At this moment, however, we use ITP both as a proof gen-
erator and as a proof checker. More precisely, the certifier sends each proof task
to ITP for validation. ITP executes the commands in the provided (expanded)
proof script, and logs its execution trace in another file, so a skeptical user can
double check it, potentially using a different checker.
The Tool. The certifier is invoked with the command certifier [-cgv] pgm. By
default, it cleans, generates proof tasks and then verifies the annotated Kalman
filter input. The cleaned code and the generated proof tasks by default are saved
in appropriate files for potential further interest. Each of the options disable a
corresponding action: -c disables saving the cleaned version, -g the generated
proof tasks, and -v the verification step. Thus, certifier -cv rover.code would
only generate the proof tasks associated to the state estimation code rover.code.

3 This is similar in spirit to what is also known as “cut elimination”.



6 Synthesizing Annotated Kalman Filters

Like in proof-carrying code [14], the burden of producing the assertions and their
proof scripts falls entirely on code producer’s shoulders. Despite the relative sup-
port provided by proof-assistants like ITP, this can still be quite inconvenient if
the producer of the code is a human. Not the same can be said if the producer
of the code is another computer program. In this section we present our efforts
in merging the discussed certification technology with a NASA Ames state es-
timation program synthesis system, called AutoFilter, thus underlying the
foundations of what we called certifiable program synthesis in [16, 15].

AutoFilter takes a detailed specification of a state estimation problem
as input, and generates intermediate code like the one in Figure 1 which is
further transformed into C++, Matlab or Octave. It is built on an algorithm

schema idea. A schema is a generic representation of a well-known algorithm.
Most generally, it is a high-level description of a program which captures the
essential algorithmic steps but does not necessarily carry out the computations
for each step. In AutoFilter, a schema includes assumptions, applicability
conditions, a template that describes the key steps of the algorithm, and the
body of the schema which instantiates the template. Assumptions are inherent
limitations of the algorithm and appear as comments in the generated code.
Applicability conditions can be used to choose between alternative schemas.
Note, however, that different schemas can apply to the same problem, possibly
in different ways. This leads to choice points which are explored in a depth-first
manner. Whenever a dead-end is encountered (i.e., an incomplete code fragment
has been generated but no schema is applicable), AutoFilter backtracks, thus
allowing it to generate multiple program variants for the same problem.

The main idea underlying the concept of certifiable program synthesis is to
make a synthesis system generate not only code, but also checkable correctness

certificates. In principle, this should be possible because any synthesis system
worth its salt generates code from a logical specification of a problem, by per-
forming formal reasoning, so it must be able to answer the question “why?”
rigorously when it generates a certain block of code; otherwise, there is no legit-
imate reason to trust such a system. We are currently modifying AutoFilter

to generate annotations together with its state estimation programs, in a form
which is certifiable by the tool presented in the previous section. We are cur-
rently able to automatically certify any synthesized program which is an instance
of a simple Kalman filter, and provide a general mechanism to extend it to all
algorithm schemas. The annotations are stored with the program schemas at
the template or body level. The template contains annotations that are global
to the algorithm represented by that schema, e.g., the specification of the filter.
The body contains annotations local to a particular piece of intermediate code
used to instantiate the template, e.g., an assertion that gain(k) minimizes the
covariance matrix for a particular instantiation of the gain matrix and the co-

variance matrix. Since AutoFilter can generate multiple implementations of
each schema, by attaching annotations to a schema, it can generate annotations
for each variation. The annotations of each schema are added by experts, who



essentially formally prove each schema correct with respect to its hypotheses.
The advantage of synthesis in this framework is that these hard proofs are done
only once and then instantiated by the synthesis engine whenever needed.
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